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CHAPTER 5 Discussion and Examples

n the previous four chapters, standard statistical

methods were presented, discussed, and illus-
trated with simple examples. Those methods and ex-
amples represent conventional analyses or situations
in which sample sizes are relatively large so that hy-
pothesis testing is essentially straightforward. The
analyses were motivated by available, commonly ap-
plied methods, and the examples were structured to
fit the methods. The purpose was to provide back-
ground statistical guidance, with examples.

In this chapter a different approach is taken.
Here, typical problems involving biosurvey data are
the starting points, and statistical methods for analy-
sis and hypothesis testing are proposed and applied
specifically to the problem. In some cases, hypothesis
testing is possible; in others, the small sample size
may limit statistical inference. In the latter situation,
the investigator may consider design changes so that
different statistical analyses can be undertaken with
biosurvey data in the future.

We begin with a general discussion of the impor-
tance of small sample size and briefly examine judg-
mental and statistical options for small sample size,
followed by examples of hypothesis testing with
small samples. The chapter concludes with “rules of
thumb.”

Working with Small Sample
Sizes

The conventional methods for statistical hypothesis
testing and interval estimation presented in chapters
1 through 4 work best under conditions that do not al-
ways exist with biosurvey data. The common ap-
proaches based on an underlying normal probability
model are clearly not essential; distribution-free
methods are versatile and effective. Still, virtually all
confirm-atory analyses (i.e., those concerned with hy-
pothesis testing and interval estimation) require esti-
mation of a “location” statistic that is the quantity of
interest (e.g., a mean, median, or quartile), and they
also require estimation of a variability statistic (e.g., a
standard error) that indicates the spread of values for
the location statistic.

An example of a desirable scenario for confirma-
tory statistical analysis was described in Chapter 2.
Data must be available from the sites of direct interest
in the assessment, and sample sizes must be large
enough for hypothesis testing. If the site-specific data
are inadequate (less than two, which would prevent

direct calculation of a sample variance), or too small,
(e.g., less than five, which would make the calculated
sample variance quite uncertain), then alternatives to
statistical testing or intervals are possible, but these
alternatives are apt to include additional conditions
or assumptions beyond those required in conven-
tional analyses.

For example, a single sampling might yield a
point estimate for IBI downstream of a wastewater
discharge, but provide no measure of variability. If
historic data exist on IBI at other impacted sites, then
it is reasonable to assume that the variability in the
historic data can be used as the variability measure
for testing at the site of interest. If, on the other hand,
the historic data analysis includes an IBI regression
based on predictors, such as watershed area and
physical habitat quality, then the standard error for
this regression is the appropriate variability measure.
The key feature of these hypothetical examples is that
other, relevant information exists that the investigator
believes can be used to estimate statistics for the site
of interest.

In the absence of historic data for statistical esti-
mation (usually for the estimate of variability), hy-
pothesis testing and interval estimation may still be
possible if the scientist is prepared to make certain as-
sumptions. For example, suppose that an aquatic biol-
ogist is confident that he or she can estimate the
variability in IBIin impacted streams based on experi-
ence and knowledge of the literature. This estimate
could provide the necessary variability measure, but
it is obviously conditional on the judgment of the bi-
ologist.

None of the approaches presented in this docu-
ment are without assumptions; even the example in
Chapter 2 includes the assumption that the sample
data adequately reflect the true situation. Judg-
ment-based estimates of statistics require a different
assumption, namely, the assumption that the investi-
gator’s judgment is good.

The most serious difficulty in the application of
interval estimation and hypothesis testing for
biosurvey data is the small sample size associated
with many biological surveys. The strength of infer-
ences from statistical analysis is tied to sample size. If
expert judgment is not available or not acceptable,
then sample size must be large; otherwise, statistical
testing is either not possible or not particularly useful.
But how large is “large enough”? There is no single,
correct answer to that question. As a rule, the stan-
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dard error drops according to the square root of the
sample size; thus, the answer to the question depends
on the error level that is acceptable in the problem un-
der study.

In general, sample sizes greater than 10 are usu-
ally desirable, and sample sizes smaller than five may
prevent meaningful statistical testing. In addition,
since standard error may be expected to drop with the
square root of the sample size, there are diminishing
returns as sample size grows larger.

What can be done when sample size is too small
and expert judgment is either not available or not ac-
ceptable? Any amount of data or evidence can indi-
cate an effect (or the absence of an effect), and this
information can be described in text, presented in ta-
bles, or displayed in graphs. However, in the case of
very small samples, it is important to emphasize that
the analysis is descriptive and not confirmatory. Al-
ternatively, if the investigators have data on biological
and chemical indicators of impairment and criteria
for each of the indicators, then it may still be possible
to test effects across indicators.

Suppose there is no sample size estimate — only
an estimate of variability based on expert judgment.
How can statistical testing be completed? We actually
have some well-established approaches to elicit judg-
ment-based quantities and error estimates, along with
an effective number of degrees of freedom (Meyer and
Booker, 1991). Alternatively, the scientist may simply
summarize test results in a table with sample size (or
degrees of freedom) and test results (e.g., p-values)
given for a range from small to large samples. In some
cases, the conclusion may not depend on the effective
sample size; in others, sample size may be critical,
which places more importance on the goodness of the
judgmental assessment,

Assessments Involving
Several Indicators

Suppose that sampling has occurred at a stream site at
which environmental degradation is suspected, but
the sample size for any single indicator is too small for
hypothesis testing. For each indicator, the state has es-
tablished an impairment criterion; thus, the results of
sampling could be presented either as a measurement
(e.g., dissolved oxygen concentration) or as success or
failure in meeting the state’s criterion. Each of the in-
dicators is expected to provide an independent mea-
sure or assessment of environmental degradation;
therefore, several indices cannot be separately in-
cluded in the analysis if they are based on the same
underlying measurements.

As an example, Table 5.1 presents three biologi-
cal indices, the IBL, ICI, and Iwb based on sampling at

a single site on three different dates. The state
biocriteria are also given. It is assumed that the
two-month period between samplings results in tem-
poral independence between the samples.

Table 5.1—Bi‘ological Indices and biocriteria
DATE | IBI ICI Iwb
June 15 43(1) 38(1) 9.4(1)
August 15 | 39(0) ’ 38(1) 8.7(1)
October 15 42(1) 36(1) 8.3(1)
Biocriteria 40 35 8.5

Since we have only a single estimate per date on
each index, and only three data points per date and
per index, statistical inference opportunities are lim-
ited. We can, however, treat the nine index estimates
in Table 5.1 as nine independent measures by which
to assess the underlying condition of biologic impair-
ment, based on biocriteria violations. The indices in
Table 5.1 are recorded as a 0-1 variable, in parenthe-
ses, indicating attainment (1) or violation (0) of each
biocriterion. Next, these nine 0-1 data points can be
subjected to statistical analysis to determine the over-
all biologic impairment reflected in the aggregate of
the three indices.

First, calculate the proportion of violations (p) in
the sample as an estimate for the probability of bio-
logic impairment at the site:

2
p===0222
P 9

p is a point estimate that is uncertain due to natural
variability and measurement error. We can calculate a
confidence interval for por test the hypothesis that pis
less than a specified critical value. Once it is calcu-
lated, a confidence interval or a percentile could serve
as a cutoff point indicative of biological impairment.
For example, one might define impairment as more
than 50 percent violations. As a variation on that idea,
Rankin and Yoder (1990) selected the 75th percentile
in a histogram of sample IBI deviations (from the
mean value) to be the limit of tolerable variation.

Confidence intervals for  can be determined us-
ing binomial tables or graphs like those presented in
Hahn and Meeker (1991), or using Table 1.4.1 in
Snedecor and Cochran (1967). For example, the
two-sided 90 percent confidence interval for this ex-
ample (based on Table A.23ain Hahn and Meeker) is

0041<p<0550

If instead of binomial tables, the large sample
normal approximation is used (see Snedecor and
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Cochran, 1967), the two-sided 90 percent confidence
interval is

p-1645(P)(1-p)/n <p<p+1645(p)(1-p)/n

which, for this example is

2 fZ 7 2 ,2 7
——1645,/=(=)/9 <p<—+1645,/—(-)/9
9 9(9) P 9 9(9)

0<p<0450

Clearly, the large sample normal approximation
is not appropriate for this small sample.

The binomial confidence interval for p is quite
large as a consequence of the small sample size; this
illustrates how small samples can hamper rigorous
statistical inference. Nevertheless, the information in
even a small number of samples can be expressed
graphically (e.g., using a histogram) or in statistics
characterizing center and dispersion. Following
Rankin and Yoder, a percentile can be selected from
the histogram to serve as a biocriterion.

Note that this percentile reflects variability in
the sample, but not strength of evidence as conveyed
in sample size or degrees of freedom. The advantage
in using a confidence interval rather than an empiri-
cal distribution percentile is that the sample size is in-
corporated in the confidence interval. Thus, more
information, expressed as a larger sample size, trans-
lates properly to a smaller confidence interval (and
indicates greater strength of evidence).

In many applications, intervals may be
one-sided, since only one side or bound is of interest.
In this example, the two-sided 90 percent confidence
interval upper cutoff of 0.55 is the one-sided upper
bound on the 95 percent confidence interval. From
this information, an infinite number of impairment
criteria are possible. One option is to require that p =
0.5 be outside the upper 95 percent confidence inter-
val for attainment; this could be interpreted as indi-
cating only a slight possibility, a 50/50 chance, of
overall biocriteria violation. With that impairment
criterion, analysis of the data in Table 5.1 leads to fail-
ure to achieve attainment. This conclusion would be
reversed, even if the 2/9 biocriteria index violation
rate continued, if more samples were collected lead-
ing to a tighter confidence interval. The conclusion
would also be different for roughly the same sample
size if the frequency of biocriteria index violation
were lower.

Regional Reference Data

Bioassessment data on regional conditions (e.g., re-
gional reference sites) may sometimes be used with
small sample sizes, or even with a single sample, to go
beyond a point estimate of status. Consider, for exam-

ple, the information presented in Yoder (1991). He
compared the assessments from the application of the
Ohio narrative macroinvertebrate criteria from 1979
through 1986 with a calculated ICI score. In this
study, about 400 sites were rated using both narrative
macroinvertebrate criteria and calculated ICI; and the
two ratings were then compared for each of the sites.

Yoder expressed this comparison using three ICI
distributions: the ICI scores for the sites labeled
“good/exceptional” based on the narrative criteria, the
ICI scores for the “fair” sites, and the ICI scores for the
“poor/very poor” sites (see Yoder, 1991, Fig. 7). Yoder
argued that the ICI scores are more reliable than are
the classifications based on the narrative criteria, and
he employed point cutoffs between classes (ICI = 35
between good and fair; ICI = 13 between fair and
poor).

If, unlike Yoder, we take the ICI distributions for
each of the three classes as reference distributions,
then we can use the classification rules typically em-
ployed with discriminant analysis (see Flury and
Riedwyl, 1988) to estimate the probability that any
new sites belong in each class. To do this, we must
make a distributional assumption concerning the
probability model that describes the ICI within each
class. As arule, it is assumed that this distribution (of
ICI) is normal (within each of the three classes), with
mean and variance estimated based on the sample
(ICI) values.

As another example of small sample size data
sets, imagine that repeated IBI measurements are
taken both from a reference site, and from a site with
known anthropogenic pollutants. Data from each of
the sites are analyzed, and their respective distribu-
tion functions are created. Such a case is presented in
Figure 5.1. Here, the IBI sampling distributions for
each site are roughly shaped as a normal distribution.

Assume, further, that a single IBI measurement
from a third site is generated. This single measure-
ment is shown on Figure 5.1 as a solid vertical line.
Does the investigator have enough information to cat-
egorize the site as impacted or not impacted? Visual
examination of the figure shows that the third site IBI
measurement lies in an area of substantial overlap be-
tween the impacted and reference site distributions.
Therefore, given that the sampling error of the third
site is unknown, it is difficult to assess with confi-
dence whether the third IBI measurement is consis-
tent with either the reference or impacted sites.

At this point, the investigator would be best
served if he or she gathered additional IBI measure-
ments. If, on the other hand, the single-sample IBI
measurement had been in the tail of either distribu-
tion. (say, an IBI of 20 or 55), then the investigator
could have classified the third site appropriately. In
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making this classification, the investigator would
have noticed that little overlap of the distributions oc-
curs in the extreme tails of the impacted and reference
site distributions.

Using Background Variability
Measures

In the previous section, the Ohio ICI biocriteria
were identified as point values between classes (e.g.,
ICI = 35 is the warmwater habitat criterion separating
“good/exceptional” from “fair”). When a single ICI de-
termination is available from a new site, the Ohio cri-
teria can be used to classify the site, ignoring
uncertainty. Beyond that, if it is assumed that the
Ohio ICI classification scheme is fixed and certain,
and if a reliable estimate of site ICI variability is avail-
able, then the classification based on a single ICI
value can be assessed using a hypothesis test.

In situations with only a single estimate of a
bioindicator, collateral information must be obtained
to provide the estimate of variability. There are sev-
eral potential measures of site bioindicator variability
that might be suitable; Rankin and Yoder’s (1990) dis-
cussion presents several informative graphs to show,
for example, that the IBI coefficient of variation drops
as IBl increases (Rankin and Yoder, 1990, Fig. 2), and
IBI coefficient of variation increases slightly as drain-
age area increases (ibid., Fig. 7).

Knowledge and judgment can be quite helpful in
selecting the variability estimate. For example, if it is
believed that the site bioindicator variability is
roughly constant within a specified category, then a
calculated estimate of variability for the bioindicator
within the appropriate class can be used as the vari-
ability measure for the site of interest. Categories may
be selected on any criterion (e.g., ecoregion, IBI range)
that is scientifically plausible and leads to an accept-
ably large overall sample size for variability estima-
tion.

Rankin and Yoder’s graphs suggest that, while
the IBI coefficient of variation changes with selected
categories (IBI range), the IBI standard deviation may
be roughly constant across IBI classes and across
ecoregions. A median standard deviation between 4
and 5 appears to be quite consistent in the graphs.
Based on this collateral information, it is assumed
that site-specific IBI in Ohio, under constant condi-
tions (i.e., no change in site factors that determine
IBI), has a standard deviation of 4.5.

Here is an example of how this estimate is used.
Assume that the single IBI measurement shown in
Figure 5.1 (IBI = 35) was taken in Ohio under the con-
ditions described. Since the sampling program in
Ohio is quite large, 4.5 is effectively the true standard

deviation for all sites; thus, with a single sample, it
may be concluded that the standard error for the
mean value (IBI = 35) is also 4.5. To determine
whether the sample is taken from the reference or im-
pacted distribution, assume that 18 IBI samples were
taken at the reference and impacted sites, and that the
following statistics are calculated:

Reference site sample mean = 42, sample standard
deviation = 5;

Impacted site sample mean =
deviation = 8.

27, sample standard

Then, a two-tailed t test using Equation 2.1b (see
Chapter 2) evaluating the null hypothesis that the
means are the same will result in the following:

t = 1.43, for the hypothesis that the reference site
mean is equal to the mean of the third site mean;
and

t = 1.245, for the hypothesis that the impacted site
mean is equal to the third site mean.

Based on this information, the investigator has
some evidence that the sample collected from the
third site is closer to the impacted site mean than to
the reference site mean. However, as conveyed by the
similar ¢ statistic results, the confidence in this con-
clusion is relatively weak.

Final Suggestions for Small
Sample Sizes

The discussion and examples in this chapter,
while intended as useful, general guidance, are not
firmly rooted in statistical theory and hence not al-
ways to be followed. Rather, they reflect our experi-
ence and observations. Further, they concern the real
situations that biologists confront — situations that
do not conform to well-established statistical proce-
dures. However difficult and awkward for statistical
analysis, the problems must be addressed. With this
caveat, the following concluding comments summa-
rize the discussion and examples presented here:

1. If the sample size is 1, a measure of variability
may still be obtained using expert judgment or
other data. If no variability measure can be jus-
tified, then descriptive statistics may be the ex-
tent of the analysis (i.e., no interval estimation
or hypothesis testing).

2. If the sample size is more than 1 but still small
(perhaps 5 or fewer), then it is possible to use
the sample to estimate variability for interval
estimation or hypothesis testing. However, the
intervals may be very large and the tests not
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Figure 5.1—IBI Distributions for reference and impacted sites

very powerful, because small sample size
means that the strength of evidence is weak.

3. Situations may exist with more than a single
estimate of variability. Perhaps one estimate
will be based on data and a second estimate on
expert judgment. In that case, the two esti-
mates of variance can be pooled, using an esti-
mator like that in Chapter 4’s “Reference
Distribution Based on Random Sampling
Model, Internal Value for c.” A difficulty in
pooling when a judgmental estimate of vari-
ance is involved is determination of the de-
grees of freedom for the judgmental variance
estimate. Perhaps the best approach is to make
a reasoned guess as to how much information
the judgment contains with respect to samples
(the “effective sample size”):

(a)if the judgment is highly uncertain, as-
sign it a small number of degrees of freedom
(perhaps 2-5),

(b) if there is more confidence in the judg-
ment, assign the judgment estimate 5+ de-
grees of freedom.

If the conclusions from this analysis are not
particularly sensitive to the exact choice of the
effective sample size for the judgmental esti-
mate, then inferences may be made with some
confidence. If, however, the conclusions are
sensitive to this choice, then the best approach

may be to obtain additional information before
drawing final conclusions.

Decision Analysis and
Unecertainty

In the preliminary approach presented here we have
advocated the use of classical statistical hypothesis
testing to summarize data concerning biological crite-
ria. We assume that a decision and succinct conclu-
sions based on the data are needed. However,
alternatives to hypothesis testing may be appropriate
in certain situations. For example, statistical and
graphic summaries (e.g., confidence intervals,
bivariate plots) may be used to summarize and pres-
ent information when the investigator believes that a
classical hypothesis test based on a single parameter
is too brief or that more evidence should be presented.

An alternative is to recast the hypothesis testing
problem using a decision analytic framework. Deci-
sion analysis (Raiffa, 1968; Reckhow, 1984) begins
with the scientific base summarized in the hypothesis
test and incorporates the consequences (e.g., costs
and benefits) of possible decisions. In an informal
analysis, a decision analytic approach may be under-
taken by the decision maker if a desired outcome of
management action is “to hedge away” from large ad-
verse consequences or losses. Informal consider-
ations and hedging may be most effectively
undertaken in an a priori assessment of costs and
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benefits, which then becomes a primary basis for
choosing between various levels of test significance.
Thus, if it seems likely that biological degradation can
be avoided, then the decision maker may request that
the biologist set the significance level for testing (e.g.,
that H, has no impact) relatively high (e.g., at 0.10 or
0.20). Alternatively, if cleanup costs are high relative
to benefits, then the test significance level (for H, has
no impact) could be set relatively low (e.g., at 0.01 or
0.005).

Suppose that a measure of biological integrity is
tested for upstream-downstream differences sur-
rounding wastewater treatment plant discharges from
small treatment plants (less than 5 million gallons per
day) throughout the state. If the per person cost to up-
grade the treatment level for small communities is
generally quite high, and the benefits to be derived
from biological improvements are generally low (rela-
tive to the organisms affected and typical uses of the
streams), hedging away from high cost may be infor-
mally undertaken by setting the significance (or “ac-
tion”) level of the test quite low (e.g., 0.01 or 0.005).
Additional study of biological degradation, costs, and
benefits would be triggered only if an up-
stream-downstream test result was significant at this
level.

Hedging away from large losses is an option pre-
cisely because of scientific uncertainty. If there were
no scientific uncertainty about biological degrada-
tion, then the analysis would always focus on costs
and benefits, and the management option with the
highest net benefits would be selected. On the other
hand, if scientific uncertainty is extreme, an appro-
priate strategy may be either to hedge farther from
large adverse consequences or to seek more informa-
tion, if possible, to reduce scientific uncertainty be-
fore new management action is adopted.

In more formal applications, decision analysis
may be used to combine uncertain scientific informa-
tion on biocriteria (expressed probabilistically) with
an overall measure of net benefits or use associated
with management actions. This approach is most ef-
fective in a Bayesian context; Reckhow (1984) pres-
ents a simple example applied to lake eutrophication
management. However, comprehensive Bayesian de-
cision analysis is apt to be prohibitively expensive (in
terms of human resources and cost) for all but the
most critical and consequential problems.

One outcome of data analysis may be that the de-
cision maker will desire more information before im-
plementing new management actions. In formal
decision analysis, a value of information calculation
should be made to help one determine the wisdom of
immediate action versus additional data collection
and analysis. In informal analysis, one should con-
sider how useful new information would be if action
has to be deferred pending its arrival.

The outcome of hypothesis testing is a statistical
summary of evidence on biological degradation. It
does not establish cause and effect, although a
well-designed test may associate degradation with a
candidate cause. The strength of causal conclusions
depends on a number of factors including a priori sci-
entific knowledge and field observation. Scientific
support for management actions is greatest when the
observation of degradation is accompanied by docu-
mentation of a causal relationship.

In most cases, environmental management deci-
sions reflect a certain limited understanding of causal
connections and a certain degree of observational evi-
dence that is more statistical in nature. This combina-
tion is areasonable basis for decision; in fact, it would
be unreasonable to expect detailed causal knowledge
in support of every decision. However, as manage-
ment actions are undertaken and biological response
is observed after the fact, more observational evi-
dence may be gathered to support earlier decisions.
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